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1. INTRODUCTION

The development of coastal communities and businesses along the east coast
has increased the potential for serious damage resulting from extratropical
storm surges. Storm surge (measured water level minus astronomical tide)
is primarily caused by wind stress on the water surface. This surge, which
is modified by the nearshore bathymetry and the shoreline, is superimposed
on the astronomical tide. When significant storm surges and associated
wave action occur at the same time as high astronomical tides, coastal pro-
perty may be seriously damaged.

2. BACKGROUND

At the request of the National Weather Service's Eastern Region, the Techniques
Development Laboratory (TDL) developed automated extratropical storm surge
forecast guidance for 12 tide gage locations along the U.S. east coast. These
locations are shown in Fig. 1.

Separate storm surge forecast equations were derived for each location with
a multiple regression screening program. The regression program was used to
correlate observed storm surge heights at 0100, 0700, 1300, and 1900 EST
(predictand) with analyzed sea-level pressure values at 6-Layer Primitive
Equation (6LPE) model grid points (predictors). This approach, where pre-
dictand data are correlated with observed predictors, is referred to as the
"perfect prog approach'". Pore et al. (1974) give a complete discussion of
the storm surge forecast method which was developed from 68 storms. These
storms occurred during 13 winters (November through April) from 1956 to 1969.

Forecasts of storm surge heights are made by interpolating sea-level pressure
forecasts of the Limited-area Fine Mesh (LFM) model to 6LPE grid points.
These interpolated values are the predictors in the storm surge forecast
equations. Since September 1977, storm surge forecasts (National Weather
Service, 1978) have been generated with sea-level pressure forecasts of the
LFM-II model. Storm surge forecasts are made out to 48 hours at 6-h intervals.

This Office Note presents a verification of the automated storm surge fore-
casts. A discussion and recommendations based upon this verification are
also presented.

3. VERIFICATION

The following is an explanation of the verification procedure and a pre-
sentation of verification results. A discussion of these results is presented
in a later section.



Storm surge forecasts were verified with measured storm surge data from
mid-November 1977 through April 1978. Daily maximum surge forecasts and
forecasts associated with significant storm surge events (magnitude of
measured surge equaled or exceeded 2 ft at six or more stations) are verified.
Each verification is presented separately.

3.1 Daily Maximum Surge Forecasts

We recorded the measured surge height (positive and negative) from data
at 0100, 0700, 1300, and 1900 EST each day. The surge height with the greatest
magnitude (maximum surge) and the corresponding time of this surge were
tabulated from these four pieces of data. If the magnitude of the maximum
surge equaled or exceeded 2 ft, the surge height and associated time were
retabulated from hourly measured data (0000 through 2300 EST). The maximum
surge forecast (positive or negative) for a 24-h period and the valid time
of this forecast were tabulated from sets of paired forecasts. The four
sets of paired forecasts are 06— and 12-h, 18- and 24-h, 30- and 36-h, and
42— and 48-h. Since the automated forecasts are generated twice each day,
each set of paired forecasts gives surge forecasts valid at 0100, 0700, 1300,
and 1900 EST. No attempt was made to match the time of the measured maximum
surge with the valid time of the forecast surge, other than to ensure that
they both occurred within the same 24-h period. These measured and forecast
data were used to compute verification statistics (correlation coefficients,
root-mean-square-errors, relative errors, biases, and averaged errors).

Verification statistics were computed for 11 of the 12 statioms. Storm
surge forecasts for Avon, N.C. were not verified because the tide gage was
removed from this location before November 1977. Statistics were computed
for each of the four sets of paired forecasts. Two sets of statistics were
also computed from the combined data of the 11 stations. One set of statistics
was based on all data. The other set was computed from only those days when
the measured or forecast magnitude of the surge equaled or exceeded 2 ft.

An overall "picture" of the forecast verification is shown in Table 1.
The statistics shown in this table are based upon all data for the combined
11 stations. Note that the verification statistics change very little with
different forecast projections. As expected, the correlation coefficients
generally decrease as the forecast projections increase, and root-mean-square-—
errors (RMSE's) and relative errors generally increase with increasing fore-
cast projections. The relative error is defined as RMSE/(average magnitude
of the measured storm surge). Biases indicate that the forecast guidance
greatly overforecasts the magnitude of positive and negative storm surges. An
average magnitude time error (AMTE) is computed from the absolute value of
the difference between the time of the measured maximum surge and the valid
time of the forecast maximum surge. This error is about 7 hours for all
forecast projections. The average time error (ATE), which is computed as
an algebraic difference, is negative for all forecast projectionms.

Verification statistics computed from significant daily maximum surges are
shown in Table 2. Significant daily maximum surges are those daily maximum
surges where the magnitude of the measured maximum surge or the forecast maximu
surge, for any set of paired forecast projection, equaled or exceeded 2 ft.
These statistics are based on approximately 20 percent of the daily maximum



surge data. The statistics shown in Table 2 also vary very little with
different forecast projections. Except for RMSE's and biases associated with
negative surge forecasts, the verification statistics based on significant
maximum surges (Table 2 statistics) are much better than the statistics based
on all daily maximum surges. This is not surprising since the Table 2
statistics are computed from a sample of data which is similar to the data
used to derive the forecast equations.

To get an idea of how the verification statistics vary at each of the
11 stations, turn to Table 3. This table shows statistics computed from
all data for each station. Only the statistics based on the 18- and 24-h
forecast projections are shown. This pair of forecast projections was
determined to be the most important for operational forecasts. While the
statistics at any one station change with forecast projection, the station
statistics computed from the 18- and 24-h forecasts are representative of
the other forecast projections.

The correlation coefficients are between 0.86 and 0.73 at all stations
except Charleston. The correlation coefficient associated with the Charleston
storm surge forecasts is only 0.54, about 25 percent lower than the average
correlation coefficient (0.74) for the combined 11 stations. Charleston
also has one of the largest relative errors. Positive surges are overfore-
cast at all stations except Portland, while the magnitudes of negative
surges are overforecast at seven of the 11 stations. Stamford has the
largest biases, while the largest AMIE (8.16 hours) is recorded at Charleston.
At all stations the sign of ATE is negative. However, this error varies
from -0.05 hours at Portland and Charleston to -3.89 hours at Newport.
Positive surges occur much more often than negative surges at all stations
except the two (Stamford and Willets Point) in Long Island Sound.

A different "verification look" at individual stations is shown in Fig. 2
through Fig. 12. The left portion of each figure shows the comparison of
the measured maximum surge with the 18- or 24-h forecast maximum surge.
Each pair of surge heights (measured and forecast) occurs within the same
24-h period. The letter "A" designates the location of each pair of heights.
If two pairs of heights have the same values, their location is denoted
with a "B", three pairs "C", and so on. In the right portion of each figure
the time error (time of measured maximum surge minus valid time of the fore-
cast maximum surge) is plotted. Three categories of time errors are plotted
with corresponding measured and forecast surge heights. The symbols and
ranges of these categories are: . = -22 hto -8 h, X=-7h to 7 h, and
M= 8 h to 22 h. The time span of each category is 15 hours. Only one time
error category can be plotted for a particular measured-forecast surge height.
Therefore, there are hidden categories at locations denoted by alphabetic
characters other than "A". Zero lines associated with the measured and
forecast surges, and a line of "perfect fit" are drawn in each comparison
plot. These plots give the following impressions.

(1) There is scatter about the line of "perfect fit".

(2) Extreme positive surges (greater than 3 ft) are underforecast.



(3) The majority of time errors lie within the -7- to +7-h category.

(4) Surges which are forecast with the wrong sign have the largest
time errors.

In summary, maximum daily surges are forecast reasonably well at all
stations except Charleston. The magnitudes of peak surges are generally
overforecast except in the cases of extreme peak events (greater than 3 ft).
Extreme peak surge events are underforecast. With regard to the forecast
time of the peak surge, forecasts are generally off +7 hours. Before these
verification results are discussed let's look at the verification of signif-
icant storm surge events.

3.2 TForecasts of Significant Storm Surge Events

We have chosen four significant storm surge events (December 17-22, 1977,
January 24-29, 1978, February 4-9, 1978, and April 25-30, 1978). The
meteorological setting, the measured storm surge heights, and the 18- and
24-h forecast storm surge heights are presented for each event. The fore-
cast storm surge heights were plotted with measured storm surge heights.
Solid lines connect plots of measured storm surge heights which were
plotted every 6 hours except for times when the surge was equal to or
greater than 2 ft. Hourly values were plotted for these times. The 18-
and 24-h surge forecasts are shown as dots. Dates are placed at 1200 EST,
and arrows (%) indicate the times of astronomical high tides.

The December event began with a low pressure system which developed along
the N.C. coast (Fig. 13). By 0100 EST the next day, the storm had moved
of fshore. Maximum surges occurred almost simultaneously at Hampton Roads,
Breakwater Harbor, Atlantic City, and New York (Fig. 14). There was good
general agreement between the measured and forecast storm surge heights.
However, the peak surge was greatly underforecast at Willets Point, and
overforecast at Baltimore and Charleston. The maximum surges which occurred
at Willets Point and locations north on December 21 were associated with a
second storm. This storm was located near the coast at 1300 EST on December
21 (Fig. 15). Note that the peak surge often occurred at the time of low tides
(midway between arrows). We will explore this phenomenon later.

The storm associated with the January 24-29, 1978 surge event was not a
coastal storm. This storm formed in the southern part of the country on
January 25. As the storm moved northward, explosive deepening took place
(see Fig. 16). On January 26, south-southwesterly winds drove water up the
Chesapeake Bay. Baltimore recorded a peak surge of 4.2 ft at 1500 EST on
January 26 (Fig. 17). The positive surge was overforecast at Stamford.
Negative surges on the 27th and the 28th were caused by westerly winds.

The record breaking storm of early February 1978 formed off the S5.C. coast
during the evening of February 5 (Fig. 18). The storm intensified as it
moved up the east coast. Cape Cod reported winds of 92 mph. Maximum surges
at Atlantic City and locations north occurred on February 6 and 7 (Fig. 19).

The storm surge trends were forecast well. However, the peak surges from
Willets Point to Portland were underforecast.



The April 25-30, 1978, storm deepened as it moved up the coast (Fig. 20).
Maximum storm surges occurred on the 26th and 27th (Fig. 21). Water levels

remained well above normal through the 28th as the mature storm moved slowly
northeastward. The peak surge at Hampton Roads was underforecast. Measured
water levels for Portland, Boston, and Newport are missing.

In summary, for these four significant surge events, storm surge trends

were generally forecast very well. However, peak surges were often underfore-
cast.

4, DISCUSSION

The following is a discussion of the verification results. Each result
is discussed separately.

4.1 Poor Forecasts for Charleston

The verification of daily maximum surges pointed out, as did an earlier
study by WSFO Charleston, that the daily maximum surge forecasts for
Charleston are not good. We believe that there may be two reasons for the
poor forecasts at this location. First, Charleston experiences fewer storm
surge events than the other locations. Extratropical storms which are
responsible for surges rarely develop and intensify until they are north
of Charleston. Because of the fewer surge cases, the Charleston surge fore-
cast equation is based on a smaller sample of data than the other forecast
equations. Therefore, the Charleston equation may be less stable than the
equations for the other locations. Because of the small developmental sample
at Charleston, sea-level pressure data with time lags were not used as pre-
dictors. The surge forecast equation for Charleston is the only equation
which does not contain sea-level pressure predictors with lag times. Since
atmospheric forcing on the water surface is not instantaneous, we feel that
the Charleston equation would give much better forecast guidance if it
contained sea-level pressure predictors with lag times. We therefore plan
to rederive the Charleston equation on a larger sample of data and include
sea-level pressures with lag times as predictors in this equation.

4.2 Misleading Biases

The forecast biases are misleading in that they indicate the forecast
equations generally overforecast the magnitude of the daily maximum surges
at most stations. The comparisons of maximum measured surges with the
maximum surge forecast for individual stations (Fig. 2 through Fig. 12)
show that extreme peak surges (greater than 3 ft) are underforecast. At
the time that these equations were implemented we realized that because
the forecasts are based on a statistical derivation, the magnitudes of the
peak surge would generally be underforecast. All surge forecasts are there-

fore adjusted by multiplying the original forecast value by a factor.

The factor is the reciprocal of the multiple correlation coefficient
associated with the forecast equation. The average value of these factors
is about 1.2. It is therefore not surprising that forecast biases are
greater than unity. From our verification it appears that negative and
positive surges should be adjusted separately. These adjustments should
only be applied above or below threshold values. We plan to determine
these adjustments and threshold values for each location, after another

season of storm surge data is added to 1977-1978 verification data.
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4,3 Time Error

The average magnitude of the time error is about 7 hours. This error
is not unreasonable since the surge is forecast at 6-h intervals, while the
measured surge heights may be recorded every hour. However, a 6-h error
can be the difference between the surge occuring at high or low tide. This
may not be as bad as it seems, since most extratropical storms have durations
longer than 12 hours. The surge generated by these storms will therefore
occur during at least one high tide. We do not plan to derive hourly fore-
cast equations.

4,4 TForecasts of Daily Maximum Surges

While the forecast equations are based on the relationship between signif-
icant storm surge events (events where the peak surge was 2 ft or greater)
and sea-level pressure, the equations do provide guidance for events where
the magnitude of the peak surge is less than 2 ft. The equations discriminate
very nicely, in most cases, between negative and positive surges (see Figs. 2
through 12). When using these equations to determine the maximum magnitude
of insignificant surges (magnitude less than 2 ft), keep in mind the RMSE's
associated with these events are about 0.80 ft.

4.5 Relationship of Maximum Surge to the Stage of the Tide

As has been pointed out earlier, it appears that significant positive
surges (surge greater than or equal to 2 ft) often occur at the time of low
astronomical tides (see Figs. 14, 17,19, and 21). Times of low tide are
located midway between arrows (4). In order to investigate the relationship
between the high and low astronomical tides and significant positive surge
heights we did the following.

The measured daily maximum surge data were separated into three categories:
(1) Category I--negative surges less than or equal to -2 ft, (2) Category II--
magnitude of surge heights less than 2 ft, and (3) Category III--positive
surges greater than or equal to 2 ft. We defined high and low stages of the
astronomical tide with a time span of 1.5 hours (45 minutes either side of
the time of the high and low tide. Table 4 contains the number of maximum
surges, by category, which occurred during high and low tide stages. It is
interesting to note that the number of maximum surges associated with
Categories I and II are nearly evenly divided between high and low tide
stages. However, Category III surges (surges greater than or equal to 2 ft)
appear to occur much more frequently at low stages of the tide.

The apparent relationship between low tides and significant positive surges
should be viewed with caution because of the small sample size. Hopefully,
another season of surge data will give us more confidence in this relationship.
We were not surprised by the apparent relationship between low astronomical
tides and peak positive surges. Harris (1963) reported that the component
of storm surges caused by onshore wind is directly proportional to the wind
stress and inversely proportional to the water depth.



5. FUTURE PLANS

After receiving comments on this Office Note from forecast offices, we
plan to redo the verification with an additional season of storm surge data.
Hopefully, this larger sample of data will enable us to tune the storm surge
forecast guidance on a station-to-station basis.

The two seasons of surge data will be used to determine if there is a
relationship between low astronomical tides and significant positive storm
surges. If these data bear out this apparent relationship, we will invest-
igate the possibility of including high and low astronomical tides as
predictors in the storm surge equations.

We will attempt to improve the Charleston surge forecasts by rederiving
the Charleston surge equations on a larger developmental sample. Sea—level
pressures with time lags will be offered as predictors in this rederivation.
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Figure 13.
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Figure 15. Sea-level pressure charts from 1300 EST December 20, 1977,
to 0100 EST December 22, 1977. '
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Figure 16. Sca-level pressure from 1300 EST January 25, 1978, to 0100 EST
January 28, 1778. '
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Table 4. Observed frequencies of measured maximum surges
of maximum surge height and low and high tide stages.

by categories

Low Tide High Tide
Categories Stage Stage Totals

Category I

Surge < 2 ft 2 A 6
Category II

-2 ft < Surge < 2 ft 164 145 309
Category III

2 ft < Surge 25 3 28
Totals 191 152 343
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